Onset of Plate Tectonics: The Effect of Continent-like Heterogeneities

Thanks to: P. Tackley and the GFD group seminar ETH Zürich

A very thrilling problem from a modeler's point of view:

- Why is there plate tectonics on Earth and not on other terrestrial planets?
 - "(The) <u>fundamental</u> question of how plates arise from mantle convection" (Bercovici).
 - "The greatest unresolved problem" (Stevenson).
 - "The Quest for Self-Consistent Generation of Plate Tectonics in Mantle Convection Models: (...) a type of Holy Grail (for) mantle convection modelers", "a long standing puzzle" (Tackley).

'Classical' models of mantle convection do not exhibit a plate-like behavior:

- 'Classical' models of mantle convection do not exhibit a plate-like behavior:
 - Isoviscous convection:

(Model by Stéphane Labrosse, $Ra = 10^7$ H = 20)

- 'Classical' models of mantle convection do not exhibit a plate-like behavior:
 - Strongly-temperature dependent viscosity:

(Ra =
$$10^6$$
 $\Delta \eta = 10^5$)

- 'Classical' models of mantle convection do not exhibit a plate-like behavior:
 - Strongly-temperature dependent viscosity:

(Ra =
$$10^6$$
 $\Delta \eta = 10^5$)

■ Kinematic plates (plate velocity imposed): (e.g. Davies, *JGR*, 1988; Bunge and Richards, *GRL*, 1996).

■ Weak zones:

 Rigid plates and weak zones (low viscosity) at plate boundaries.

```
e.g. Gurnis and Hager (Nature, 1988), Davies (GJI, 1989), King and Hager (GRL, 1990), Lowman and Jarvis (PEPI, 1995)
```

- Kinematic plates (plate velocity imposed): (e.g. Davies, *JGR*, 1988; Bunge and Richards, *GRL*, 1996).
- Weak zones:
 - Rigid plates and weak zones (low viscosity) at plate

■ Kinematic plates (plate velocity imposed): (e.g. Davies, *JGR*, 1988; Bunge and Richards, *GRL*, 1996).

■ Weak zones:

 Rigid plates and weak zones (low viscosity) at plate boundaries.

```
e.g. Gurnis and Hager (Nature, 1988), Davies (GJI, 1989), King and Hager (GRL, 1990), Lowman and Jarvis (PEPI, 1995)
```

- First steps towards generating plate tectonics in models.
- ► Plates considered as a boundary condition on top of the convective mantle.

- First steps towards generating plate tectonics in models.
- Plates considered as a boundary condition on top of the convective mantle.

- First steps towards generating plate tectonics in models.
- ▶ Plates considered as a boundary condition on top of the convective mantle.
- But velocity and heat flux observations: the plates are the upper thermal boundary layer for mantle convection.

- First steps towards generating plate tectonics in models.
- ► Plates considered as a boundary condition on top of the convective mantle.
- ▶ But veloc upper the

lates are the vection.

- First steps towards generating plate tectonics in models.
- ► Plates considered as a boundary condition on top of the convective mantle.
- ▶ But veloc upper the

lates are the vection.

- First steps towards generating plate tectonics in models.
- Plates considered as a boundary condition on top of the convective mantle.
 - "plates and convection are one coupled system" (Tackley, AGU Monog., 1999).
 - "the plates are convection" (Bercovici, EPSL, 2003).

- First steps towards generating plate tectonics in models.
- Plates considered as a boundary condition on top of the convective mantle.
 - "plates and convection are one coupled system" (Tackley, AGU Monog., 1999).
 - "the plates are convection" (Bercovici, EPSL, 2003).
- Need for a <u>self-consistent</u> approach:
 - Fully dynamical approach.
 - One description for mantle and plates.

- What do we want to get?
- Two-dimensional models:
 - Strong plate interiors and narrow deforming boundaries.
 - Plate-like velocity at the surface: uniform at the scale of a plate.
 - One-sided subduction zones.
- Three-dimensional models:
 - Large Toroidal/Poloidal ratio.
 - Strike-slip (transform faults).

■ What do we get with "simple" rheologies?

- What do we get with "simple" rheologies?
- Isoviscous. Basal heating:

- What do we get with "simple" rheologies?
- Isoviscous. Internal heating:

- What do we get with "simple" rheologies?
- Strongly-temperature dependent viscosity:

- First attempts:
 - Temperature-dependent viscosity,
 - Non-Newtonian rheology: power law: $\dot{\varepsilon} \sim \sigma^{\rm n}$. (Weinstein, *Pure Appl. Geophys.*, 1996; Weinstein and Olson, *GJI*, 1992)
 - ► Helps localization and approaches plate-like behavior.

- First attempts:
 - Temperature-dependent viscosity,
 - Non-Newtonian rheology:

- First attempts:
 - Temperature-dependent viscosity,
 - Non-Newtonian rheology: power law: $\dot{\varepsilon} \sim \sigma^{\rm n}$. (Weinstein, *Pure Appl. Geophys.*, 1996; Weinstein and Olson, *GJI*, 1992)
 - ► Helps localization and approaches plate-like behavior.

- First attempts:
 - Temperature-dependent viscosity,
 - Non-Newtonian rheology:

- With realistic temperature-dependency: very strong upper viscous lid.
- Power-law rheology is not enough to break this strong lid.
 (Solomatov, *Phys. Fluids*, 1995)
- Need to explicitly include yielding.

- Viscoplastic rheology: introduction of yield stress.
- Two-dimensional models with viscosity strongly dependent on temperature and depth-dependent yield stress, to mimic brittle failure
 (Byerlee's frictional law: σ_v(z) = C₀ + μ ρg z):

(Moresi and Solomatov, GJI, 1998)

- Good plate-like behavior possible.
- Identification of different regimes:
 - High yield stress: stagnant-lid.
 - Intermediate: episodic mobility.
 - Low yield stress: mobility.

- Viscoplastic rheology: introduction of yield stress.
- Two-dimensional models with viscosity strongly dependent on temperature and depth-dependent yield

- Viscoplastic rheology: introduction of yield stress.
- Two-dimensional models with viscosity strongly dependent on temperature and depth-dependent yield stress, to mimic brittle failure
 (Byerlee's frictional law: σ_v(z) = C₀ + μ ρg z):

(Moresi and Solomatov, GJI, 1998)

- Good plate-like behavior possible.
- Identification of different regimes:
 - High yield stress: stagnant-lid.
 - Intermediate: episodic mobility.
 - Low yield stress: mobility.

- Viscoplastic rheology: introduction of yield stress.
- Two-dimensional models with viscosity strongly dependent on temperature and depth-dependent yield stress, to mimic brittle failure

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Three-dimensional models:
 - Trompert and Hansen, Nature, 1998:
 Episodic plate-tectonics.
 - Tackley, G³, 2000:
 Stable plate tectonics for a certain range of yield stress.

- Some problems:
 - Intra-plate deformation.
 - Low "plateness": plate boundaries are too wide.
 - In 3D: no transform faults.
 - Toroidal/Poloidal ratio too low.
 - Modelers need to use a yield stress significantly <u>lower</u> than what's given for the strength of the lithosphere by laboratory experiments on rocks: ~ 400-600 MPa (e.g. Kirby, *Rev. Geophys. Space Phys.*, 1983; Kohlstedt et al., *JGR*, 1995).

- Addition of other complexities:
 - Self-lubrication (a.k.a. self-weakening)
 (Bercovici, EPSL, 1993; Tackley, G³, 2000):
 stress decreases with strain-rate beyond a critical value.
 - Low viscosity asthenosphere.
 (Tackley, G³, 2000; Richards et al., G³, 2001;
 Busse et al., GJI, 2006)
 - Depth-dependency of some properties: viscosity and thermal expansion.

(e.g. Stein et al, *PEPI*, 2004)

- Addition of other complexities:
 - Self-lubrication (a.k.a. self-weakening)
 (Bercovici, EPSL, 1993; Tackley, G³, 2000):
 stress decreases with strain-rate beyond a critical

- Addition of other complexities:
 - Self-lubrication (a.k.a. self-weakening)
 (Bercovici, EPSL, 1993; Tackley, G³, 2000):
 stress decreases with strain-rate beyond a critical value.
 - Low viscosity asthenosphere.
 (Tackley, G³, 2000; Richards et al., G³, 2001;
 Busse et al., GJI, 2006)
 - Depth-dependency of some properties: viscosity and thermal expansion.

(e.g. Stein et al, *PEPI*, 2004)

- Modelers predict <u>low</u> yield stress:
 - Plate tectonics switched off in 3D models for σ > 200 MPa.
 (Tackley, G³, 2000)
 - Good Earth-like behavior for $\sigma = 80$ MPa. (Gait and Lowman, *GJI*, 2007)
 - Initiation of subduction by small-scale convection for $\sigma = 30$ MPa.

(Solomatov, JGR, 2004)

- Modelers predict <u>low</u> yield stress.
- Two directions:
 - Can we explain why the lithosphere strength is low?
 e.g. effect of water...
 - Can we add things in the models that can generate higher stresses?

- Modelers predict <u>low</u> yield stress.
- Two directions:
 - Can we explain why the lithosphere strength is low?
 e.g. effect of water...
 - Can we add things in the models that can generate higher stresses?

- Modelers predict <u>low</u> yield stress.
- Two directions:
 - Can we explain why the lithosphere strength is low?
 e.g. effect of water...
 - Can we add things in the models that can generate higher stresses?
- ► The Earth is the only planet with plate tectonics and with continents.

$$Ra = 10^5$$

 $Ra = 10^8$

 $\mathsf{Ra} = 10^6$

$$Ra = 10^7$$

- Insulating continents increase the convective wavelength.
- This elongation increases with the Rayleigh number.

(Grigné et al., *JGR*, 2007)

Method

- Purely ductile yielding: constant yield stress σ_y (no depth-dependency).
- Why?
 - Systematic study with reasonable amount of parameters.
 - Able to express yield stress σ_y in a simple way.
 - Whole-mantle convection: brittle part is very thin.
 - Difference with brittle-ductile is small (Tackley, G3, 2000).
- Temperature-dependent viscosity. No other complexities.
- Code: Stag3D (Tackley).

- Low σ_y (<200 MPa) needed in 3D and/or with high internal heating
 [e.g. Tackley, G³, 2000]
- \blacksquare 2D and no internal heating: can use high yield stress σ_y
- Requires large boxes
- Stable only when long wavelength is attained

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- $\overline{lue{}}$ Ra = $10^6,~\sigma_{\mathsf{y}}=10^5(\sim500\mathsf{MPa}),~\Delta\eta=10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra $= 10^6, \ \sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa}), \ \Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra $= 10^6, \ \sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa}), \ \Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- $\overline{lue{}}$ Ra = $10^6,~\sigma_{\mathsf{y}}=10^5(\sim500\mathsf{MPa}),~\Delta\eta=10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- \blacksquare Ra = 10^6 , $\sigma_{\sf y} = 10^5 (\sim 500 {\sf MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5 (\sim 500 \text{MPa})$, $\Delta \eta = 10^5$

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

- Initial: boundary layers.
- Ra = 10^6 , $\sigma_y = 10^5$, $\Delta \eta = 10^5$ Insulating continent a=3.

3D models

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.95 - Blue: T=0.7

3D models

 ${\sf Ra}=10^6$ $\sigma_{\sf y}=10^5$ Red: T=0.95 - Blue: T=0.7

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

$${
m Ra}=10^6$$
 $\sigma_{
m y}=10^5$ Red: T=0.8 - Blue: T=0.2

3D models

without continent

First summary - Effect of continents

- In 2D:
 - Plate tectonics occurs sooner.
 - More stable.
- In 3D:
 - One can use higher yield stress.
- One-sided subduction zones.

First summary - Effect of continents

■ In 2D:

First summary - Effect of continents

- In 2D:
 - Plate tectonics occurs sooner.
 - More stable.
- In 3D:
 - One can use higher yield stress.
- One-sided subduction zones.

Thermal evolution

- Computations in 2D at different Rayleigh numbers and internal heating rates chosen to represent different ages of the Earth's thermal history
- \blacksquare Ages up to t = 2 Gy
- Internal heating:
 - Mantle always depleted (early formation of continents).
 - Radioactive decay.
- Rayleigh number:
 - Linear increase of T_{CMB} with age: 100 K/Gy.

Thermal evolution

Computations in 2D at different Rayleigh numbers and internal heating rates chosen to represent different ages of the Earth's thermal history

Age t (Gy)	T_b (K)	H (μ W.m $^{-3}$)	$\eta(T_b)$ (Pa.s)	Ra^*	H^*
0.0	1973	$1.59.10^{-2}$	10^{22}	7.10^{6}	22
0.5	1998	$1.76.10^{-2}$	$8.5.10^{21}$	8.10^{6}	24
1.0	2023	$1.97.10^{-2}$	$7.2.10^{21}$	$9.5.10^{6}$	27
1.5	2048	$2.24.10^{-2}$	$6.2.10^{21}$	$1.1.10^{7}$	30
2.0	2073	$2.59.10^{-2}$	$5.3.10^{21}$	$1.3.10^7$	34

$${
m Ra} = 1.1.10^7 \quad {
m H} = 30 \ ({
m age} = 1.5 \ {
m Gy}) \qquad \sigma_{
m y} = 3.5.10^5 \ (196 \ {
m MPa})$$

- Stagnant lid regime.
- Negative heat flux at the CMB.

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 2.10^5$ (175 MPa)

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \ ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \ (175 \ {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${\sf Ra} = 7.10^6 \quad {\sf H} = 23 \; ({\sf present}) \qquad \sigma_{\sf y} = 2.10^5 \; (175 \; {\sf MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

$${
m Ra} = 7.10^6 \quad {
m H} = 23 \; ({
m present}) \qquad \sigma_{
m y} = 2.10^5 \; (175 \; {
m MPa})$$

- Sporadic stagnant lid regime.
- Definition of two regimes:
 - Stagnant lid
 - Plate tectonics
 defined on the time-averaged heat flux and velocity

- Sporadic stagnant lid regime.
- Definition of two regimes:
 - Stagnant lid
 - Plate tectonics
 defined on the time-averaged heat flux and velocity

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 3.10^5$ (263 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

$$Ra = 7.10^6$$
 $H = 23$ (present) $\sigma_y = 5.10^5$ (438 MPa)

Different regimes:

- Plates:
 - Stable plate tectonics
 - "Real" subduction zones
 - Reorganization of divergence and subduction zones
- "Sluggish" motion of the stagnant lid and continent
- Fixed viscous lid and continent

Different regimes:

■ Plates:

Different regimes:

- Plates:
 - Stable plate tectonics
 - "Real" subduction zones
 - Reorganization of divergence and subduction zones
- "Sluggish" motion of the stagnant lid and continent
- Fixed viscous lid and continent

Different regimes:

■ Plates:

Different regimes:

- Plates:
 - Stable plate tectonics
 - "Real" subduction zones
 - Reorganization of divergence and subduction zones
- "Sluggish" motion of the stagnant lid and continent
- Fixed viscous lid and continent

Different regimes:

■ Plates:

Different regimes:

- Plates:
 - Stable plate tectonics
 - "Real" subduction zones
 - Reorganization of divergence and subduction zones
- "Sluggish" motion of the stagnant lid and continent
- Fixed viscous lid and continent

With a continent of width $a=2,\ d_c=0.1\ d,\ H_c=H$

Without continent

With a continent of width $a=2,\ d_c=0.1\ d,\ H_c=H$

Without continent

lacksquare Criteria on the mobility: mobility $= rac{V_{
m rms}^{
m surf}}{V_{
m rms}^{
m tot}}$

- Criteria on the mobility: mobility = $\frac{V_{rms}^{surf}}{V_{rms}^{tot}}$
- Plate if mobility > 0.5
- Observation: mobility $> 0.5 \iff Q_{bot} > 0$

With continent

Without continent

With continent

Regimes with continent

Without continent

Scaling laws

Velocity for a convective cell with pure internal heating:

Scaling laws

Velocity for a convective cell with pure internal heating:

Ra= 7.10^6 , H=22 (present), $\sigma_y = 3.10^5$ (260 MPa).

▶ Yielding if vertically averaged normal stress $\overline{\sigma_{xx}} > \sigma_{y}$.

▶ Force acting on the stagnant lid: $F = \overline{\sigma_{xx}} d_L$.

▶ This force equals the viscous drag at the base of the lid:

$$F = \int_0^L \sigma_{xz}(x) dx$$
.

▶ Condition for breaking the lid:
$$\int_0^L \sigma_{xz}(x) dx > \sigma_y d_L$$

- Shear stress: $\sigma_{xz}(x) = \eta(T_c) \frac{\partial u}{\partial z} = \eta(T_c) \frac{u(x)}{\delta_c}$.
- We need to know:
 - Velocity: u(x),
 - Active boundary layer thickness: δ_c ,
 - Lid thickness: d_L,
 - Temperature below the lid: T_c.

- Viscous temperature scale: $T_i T_c = \gamma \Delta T_{rh}$. (e.g. Davaille and Jaupart, *JGR*, 1994)
- Heat transfer balance: $H = \frac{T_i T_c}{\delta_c} = \frac{T_c T_s}{d_L}$.

$$| \overline{\sigma_{xx}} = \frac{4}{3} \eta(T_c) \frac{U}{T_c} L H |, \quad \text{with } U, T_c = f(Ra, H, L).$$

Without continent

With continent

$${\sf Ra} = 7.10^6 \qquad {\sf H} = 22 \quad {\sf t} = 0 \; {\sf Gy}$$

$$Ra = 9.5.10^6$$
 $H = 27$ $t = 1$ Gy

$$Ra = 1.3.10^7$$
 $H = 34$ $t = 2$ Gy

■ Longer wavelength with continent.

► Viscous drag integrated on longer width.

- Longer wavelength with continent.
- Other effects:
 - Slope in the stagnant lid.
 - Increase in temperature.

- Longer wavelength with continent.
- Other effects:
 - Slope in the stagnant lid.
 - Increase in temperature.

- Longer wavelength with continent.
- Other effects:
 - Slope in the stagnant lid.
 - Increase in temperature.
- Continents enhance plate tectonics by modifying the geometry of the flow.

- Longer wavelength with continent.
- Other effects:
 - Slope in the stagnant lid.
 - Increase in temperature.
- Continents enhance plate tectonics by modifying the geometry of the flow.

Crust and continental root with low internal heating

Crust and continental root with high internal heating

Crust and continental root with high internal heating

- Plate tectonics is enhanced if continents can provide long wavelength.
- Continental roots do that if the internal heating inside the root is high.

Effect of the box size

- With models with self-consistent plate tectonics, we can study plate reorganization over time.
- Important time-dependency with the presence of continents.

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

$${
m Ra}=10^7$$
 $\sigma_{
m y}=5.10^5$ Red: T=0.85 - Blue: T=0.35

- With models with self-consistent plate tectonics, we can study plate reorganization over time.
- Important time-dependency with the presence of continents.
- ▶ To do with several continents...

■ Ra = $\overline{7.10^6}$ H = 22 $(1.6.10^{-2} \mu \text{W.m}^{-3})$ $\sigma_{\text{y}} = 2.10^{5} (175 \text{ MPa})$

■ Ra = $\overline{7.10^6}$ H = 22 $(1.6.10^{-2} \mu \text{W.m}^{-3})$ $\sigma_{\text{y}} = 2.10^{5} (175 \text{ MPa})$

■ Ra =
$$7.10^6$$
 H = $22 (1.6.10^{-2} \mu \text{W.m}^{-3})$ $\sigma_{\text{y}} = 2.10^5 (175 \text{ MPa})$

- Non-monotonicity of plate tectonics and mantle dynamics.
- ► Influence on mantle thermal history. (Grigné et al., JGR, 2005; Gait and Lowman, GJI, 2007; Loyd et al., PNAS, 2007)
 - Geochemical record of this non-monotonic trend.
 (Parman et al., Nature, 2005; Pearson et al., Nature, 2007)

- Non-mono dynamics.
- Influence c (Grigné et a Loyd et al.,
 - Geochemi(Parman et

ıntle

JI, 2007;

trend. ature, 2007)

- Non-monotonicity of plate tectonics and mantle dynamics.
- ► Influence on mantle thermal history. (Grigné et al., JGR, 2005; Gait and Lowman, GJI, 2007; Loyd et al., PNAS, 2007)
 - Geochemical record of this non-monotonic trend.
 (Parman et al., Nature, 2005; Pearson et al., Nature, 2007)

- Method used here: viscoplastic rheology yield stress.
- The physics of damage with our approach is somewhat prescribed rather than described (Bercovici, *EPSL*, 2003). To include:
 - Grain size reduction.
 - Healing (grain growth).
 - Incorporation of volatiles.
 - Viscous heating.
 - ...

(Two-phase damage theory: e.g. Ricard and Bercovici, *GJI*, 2003; Bercovici and Ricard, *JGR*, 2005)

Another parametrization of yielding? (L.Moresi' talk)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\mathsf{y}} = 17 \; \mathsf{MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\rm y}=34~{
m MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\rm v}=69~{
m MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\mathsf{y}} = 103 \; \mathsf{MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\mathsf{y}} = 120 \; \mathsf{MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\rm y}=243~{
m MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

- The effect of the wavelength/geometry of the flow is primordial.
- The Earth is a spherical object.

$$\sigma_{\rm v}=340~{
m MPa}$$

(Models of Hein van Heck. ETH Zürich. Poster)

Final remark

➤ Why is there plate tectonics on Earth and not on other terrestrial planets?

Final remark

- Why is there plate tectonics on Earth and not on other terrestrial planets?
 - Is the Earth less strong than other planets?
 - \rightarrow Effect of water.
 - → Shouldn't it break more?
 - Is there something on Earth that makes it more 'stressed' than other planets?
 - → Effect of heterogeneities.
 - → Something that changes the geometry of the flow?