### Real-Time Interactive Visualization of Three-Dimensional Mantle Convection



#### Dave Yuen, Megan Damon, E.O.D. Sevre

Minnesota Supercomputing Institute University of Minnesota, Minneapolis, Minnesota

#### Mike Knox and David Henry Porter

Laboratory of Computational Science and Engineering University of Minnesota, Minneapolis, Minnesota

#### M. Charley Kameyama

Earth Simulator Center, JAMSTEC, Yokohama, Japan



#### Outline

- 1. Introduction: raison d'être, onslaught of petascale computing, the "data tsunami"
- LCSE visualization system
- 3. 3-D numerical model ACuTEMan, by Charley Kameyama
- Demands of interactive visualization
- Examples
- Emerging paradigm in numerical modeling and visualization

#### Petascale Computing



#### The Devil Is in the Details



#### Large 3-D Data Sets

- Can 3-D time dependent data sets be visualized on the fly?
- Seismology advancements: 2000x2000x2000 points from 500x500x1000 points!
- Wave patterns must be extracted from seismic calculations.
- This is more manageable using curvelets (De Hoop) for decomposition.

### Challenges of Large Data Sets



Can we do this interactively and collaboratively?



#### Why Visualization?

- Numerical simulations and field experiments produce extremely large datasets
- Petascale computing: in 2002 it was a dream, but by 2012 it is a reality, like Global Warming
- The size of these datasets are increasing exponentially fast, with resolution
- Numerical output (e.g. tables) does not lend itself to easy comprehension
- We need new dynamical display of fields for unraveling new physics

#### Post-Processing Visualization

- Start with raw data files from HPC system
- Results are analyzed to determine the best visualization techniques
- Human spends a lot of time learning and using software packages
- There is a need to automate these steps for a much faster turn around



### LCSE Visualization System

- Raw data from the BladeCenter is transferred over Infiniband using a client-server application
- 3-D results are rendered as a volume at LCSE
- Researchers use DSCVR software to interact with data
- Data can be displayed on high resolution Powerwall



### Closer look at LCSE system



#### **ACuTEMan**

- Written by Charley Kameyama, who is moving to Ehime University in September 2007
- Parallel, multigrid cartesian, finite volume code, written for vector parallel computing using MPI-2
- Benchmarked at 3.4 Teraflops a Supercomputing 2005 in Pittsburgh
- Generalized to Yin-Yang grid for 3-D spherical geometry and recently executed on the Earth Simulator. Variable viscosity contrast up to ten thousand across adjacent grid points

<sup>\*</sup>Kameyama, Kageyama, Sato, J. Computational Physics, 2005 Kameyama, J. Earth Simulator, 2006.

### Multigrid Method





# Demands of Petascale Computing

- 5 hours on 3-D grid with 2000x2000x2000 grid points
- 5 grid fields x 4 bytes storage every 5 minutes (or thousand time steps) on a linear scale with 5,000 cores
- = 2000x2000x2000x5x4x60 = 9.6 TB
- 40 runs -> 384 TB of raw data AND we are only storing every 1,000 time steps (stingy)!
- Solutions:
  - Stream raw output data to visualization system in real time to generate movies - data compression
  - Interactive visualization with real-time simulation avoid saving most of the data

## Need for Software & Hardware Solutions

- Collaborative mode of visualization whereby we can communicate readily upon viewing a common image
- Storage capabilities at a central site on demand
- Web-portal services for controlling our desires

## Results - Real-time Interactive Visualization with LCSE DSCVR



128x128x128 grid points rendering in real time across 128 PUs

## Results - Real-time Interactive Visualization with LCSE Powerwall



128x128x128 grid points rendered in real time across 128 PUs

Displayed on 13 megapixel Powerwall

Rayleigh number = 10<sup>6</sup>

#### Results - Larger Grid, More Processors, Higher Rayleigh Number



128x256x256 grid points rendered in real time across 256 PUs

Time step 2,700

Rayleigh number = 4x106

#### 16,000 time steps later...



128x256x256 grid points rendering in real time across 256 PUs

Time step 19,000

Rayleigh number = 4x10<sup>6</sup>

#### Results - Performance gains



Total compute time reduced on average by 30 % Local disk space on Supercomputer also reduced

# Movie of Interactive Visualization



Higher quality: <a href="http://www.msi.umn.edu/~esevre/lcse/interactive/megan-powerwall-v1.0iPod.m4v">http://www.msi.umn.edu/~esevre/lcse/interactive/megan-powerwall-v1.0iPod.m4v</a>

### Interactive Computing

- Limited time duration, perhaps 1 or 2 hours
- Balance between grid resolution and number of processors
- Few frames to one frame per second
- Runs can be monitored from remote locations



# New Paradigm in Numerical Modeling

- Disks are a well-known bottlenecks that slow research
- We need real-time computing combined with interactive visualization for fast feedback and results
- We can leverage high speed networks instead of disks to reduce storage requirements
- Web services for remote collaborations
- Streamlined visualization techniques
- This will drastically reduce storage requirements and save compute time
- We can run a model to analyze results instead of pulling results from an archive
- Short interactive periods



#### Summary

- The imminent arrival (2011) of petascale computing makes it imperative that we develop some strategy for visualizing the flood of time-dependent 3-D data and simulations.
- Interactive visualization of 3-D convection is feasible now with the deployment of hundreds of processors together with a fast network, multi-Terabyte storage at each visualization node. Large-display devices (CAVE, PowerWall) and web-portal services will allow for collaborative research.
- This mode of operation (via a client-server application) will eventually be used by many parties around the world. A new paradigm in large-scale numerical modeling is now at hand.